Mannose-recognition mutant of the galactose/N-acetylgalactosamine-specific C-type lectin CEL-I engineered by site-directed mutagenesis.
نویسندگان
چکیده
BACKGROUND CEL-I is a galactose/N-acetylgalactosamine-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. Its carbohydrate-binding site contains a QPD (Gln-Pro-Asp) motif, which is generally recognized as the galactose specificity-determining motif in the C-type lectins. In our previous study, replacement of the QPD motif by an EPN (Glu-Pro-Asn) motif led to a weak binding affinity for mannose. Therefore, we examined the effects of an additional mutation in the carbohydrate-binding site on the specificity of the lectin. METHODS Trp105 of EPN-CEL-I was replaced by a histidine residue using site-directed mutagenesis, and the binding affinity of the resulting mutant, EPNH-CEL-I, was examined by sugar-polyamidoamine dendrimer assay, isothermal titration calorimetry, and glycoconjugate microarray analysis. Tertiary structure of the EPNH-CEL-I/mannose complex was determined by X-ray crystallographic analysis. RESULTS Sugar-polyamidoamine dendrimer assay and glycoconjugate microarray analysis revealed a drastic change in the specificity of EPNH-CEL-I from galactose/N-acetylgalactosamine to mannose. The association constant of EPNH-CEL-I for mannose was determined to be 3.17×10(3) M(-1) at 25°C. Mannose specificity of EPNH-CEL-I was achieved by stabilization of the binding of mannose in a correct orientation, in which the EPN motif can form proper hydrogen bonds with 3- and 4-hydroxy groups of the bound mannose. CONCLUSIONS Specificity of CEL-I can be engineered by mutating a limited number of amino acid residues in addition to the QPD/EPN motifs. GENERAL SIGNIFICANCE Versatility of the C-type carbohydrate-recognition domain structure in the recognition of various carbohydrate chains could become a promising platform to develop novel molecular recognition proteins.
منابع مشابه
Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.
CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which i...
متن کاملRecognition of human urine alpha-N-acetylglucosaminidase by rat hepatocytes. Involvement of receptors specific for galactose, mannose 6-phosphate and mannose.
Adsorptive endocytosis of alpha-N-acetylglucosaminidase from human urine by isolated rat hepatocytes is inhibited by glycoproteins, polysaccharides and sugars that are known to bind to cell-surface receptors specific for either terminal galactose/N-acetylgalactosamine residues, terminal mannose residues or mannose 6-phosphate residues. Recognition of alpha-N-acetylglucosaminidase by a cell-surf...
متن کاملC-type lectins on dendritic cells: key modulators for the induction of immune responses.
DCs (dendritic cells) are specialized in the recognition of pathogens and play a pivotal role in the control of immune responses. DCs are also important for homoeostatic control, recognizing self-antigens and tolerizing the tissue environment. The nature of the antigen recognized tilts the balance towards immunity or tolerance. CLRs (C-type lectin receptors) expressed by DC are involved in the ...
متن کاملTerminal N-Acetylgalactosamine-Specific Leguminous Lectin from Wisteria japonica as a Probe for Human Lung Squamous Cell Carcinoma
Millettia japonica was recently reclassified into the genus Wisteria japonica based on chloroplast and nuclear DNA sequences. Because the seed of Wisteria floribunda expresses leguminous lectins with unique N-acetylgalactosamine-binding specificity, we purified lectin from Wisteria japonica seeds using ion exchange and gel filtration chromatography. Glycan microarray analysis demonstrated that ...
متن کاملDifferentiation of Helicobacter pylori isolates based on lectin binding of cell extracts in an agglutination assay.
Plant and animal lectins with various carbohydrate specificities were used to type 35 Irish clinical isolates of Helicobacter pylori and the type strain NCTC 11637 in a microtiter plate assay. Initially, a panel of eight lectins with the indicated primary specificities were used: Anguilla anguilla (AAA), Lotus tetragonolobus (Lotus A), and Ulex europaeus I (UEA I), specific for alpha-L-fucose; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1850 7 شماره
صفحات -
تاریخ انتشار 2015